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A B S T R A C T 	
	

 
High temperature gradients and resulting residual stresses are the main sources of defects such as cracks, 
distortion and fatigue failure is selective laser melting. In this paper, a new material model utilizing 
anisotropic thermal conduction model and track-scale heat input model is used to predict the melt pool 
geometry, material state and thermal history during the SLM process of SS316L in a large range of laser 
parameters. The model takes into consideration both the material state and the issue of phase transition 
during the track-scale simulation. The simulated melt pools in the beam-scale and track-scale simulations 
are compared with experimental measurements in different laser parameters. It is found that the proposed 
material model is able to maintain accuracy between the beam-scale and track-scale simulations at an 
average of 5μm regarding melt pool dimensions. Furthermore, it can be inferred that both track-scale 
and beam-scale models exhibit the capability to provide precise predictions of melt pool geometries 
when compared to experimental measurements while the former being about 100 times faster than the 
latter. An average error of 10% was concluded for the material state comparison of the two models while 
the track-scale model was able to capture the temperature profile and cooling rate accurately in 
comparison with the beam-scale model. 
	

 
 
 
 
 

1.	INTRODUCTION1	
	
Additive manufacturing (AM) represents an innovative 
manufacturing process in contrast to the traditional subtractive 
manufacturing methods which allows for the production of 
components based on a CAD file, eliminating the need for 
dedicated tools or dies. Selective Laser Melting (SLM) is a 
widely employed laser powder bed fusion process capable of 
meeting the precision demands of advanced applications in 
industries such as aerospace, defense, and biomedical fields 
[1, 2]. In recent times, there have been numerous research 
endeavors aimed at improving the performance and 
capabilities of parts fabricated using SLM. These 
investigations mostly focus on process parameters 
optimization [3, 4], thermal behavior [5-7] and post processing 
[8, 9]. Additionally, the research focus has been expanded to 
explore the microstructure in order to achieve enhanced 
material properties. [10-12]. However, high-temperature 
gradient, and as a result high cooling rate, during the SLM 
process tend to induce high thermal stresses. Thermal stress-
induced flaws, such as cracks, fatigue-related failure and 
delamination, represent the primary causes of failure in the 
printing process [13-16]. 
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To resolve the high temperature gradient during the SLM 
process, Simons et al. [17] and Hussein et al. [18] optimized 
the process parameters to minimize the temperature gradient 
by conducting a large experimental data base. This method is 
not viable for the cost to conduct such experiments is too high. 
Therefore finite element (FE) method has been widely used to 
predict the thermal and behavior during and post process [19, 
20]. 
Understanding the solidification behavior in the SLM process 
relies on the assessment of crucial factors such as melt pool 
morphology, track surface features, and thermal evolution. 
[18, 21, 22]. Different models have been developed. Yuan P. 
et al. [23] found out the melt pool takes a wide and shallow 
shape in presence the Marangoni effect while it takes a narrow 
and deep shape in absence of the Marangoni effect. The study 
utilized isotropic physical properties. Among the various 
properties, thermal conductivity plays a pivotal role in 
influencing the geometry of the melt pool. A number of 
investigations have been carried on the anisotropic enhanced 
thermal conductivity. Kamara A. M. et al. [24] found that 
employing anisotropically enhanced model can enhance the 
accuracy of melt pool dimension predictions during the laser 
deposition of nickel alloys. Safdar et al. [25] used the 
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anisotropic approach to artificially simulate melt pool 
convection for laser melting of Inconel 718. Siao et al. [26] 
found that utilizing the anisotropic heat conduction leads to 
small deviation in the melt pool dimensions compared to the 
experimental measurements in comparison with the 
Marangoni flow model. 
The numerical models of the SLM process are usually 
categorized into three levels: micro-level models which are in 
the range of a few hundred microns, meso-scale models which 
are in the range of a number of scanning tracks and macro-
level models which simulate the whole part. Depending on the 
scale of the simulation, various heat input models can be 
employed, including beam-scale, track-scale and layer-scale 
[27]. One common way to simulate the process in macro-scale 
level is to use the lumped laser model where heat input is 
implemented over several layers. This approach although 
offers acceptable accuracy predicting part distortion, lacks 
resolution for predicting thermal history in the model [28, 29]. 
FE model utilizing beam-scale heat input, is well-suited for 
simulating the temperature changes within a single welding 
track or several tracks. However, it is not conducive to 
simulating a component-scale model comprising multiple 
layers, each with several laser tracks, due to the substantial 
computational overhead involved. [30]. This is due to small 
diameter of laser and large size of the building part. To solve 
a transient beam-scale model, a large number of finite 
elements and time increments is needed [31]. Researchers 
have reported a computational time of 90h for the thermal 
model [32]. 
A conventional way to make the model more efficient, is the 
use of track-scale heat input model. In this model, the beam-
scale heat input is integrated over an arbitrary time increment 
and then the entire track length is simulated in a single 
increment. This will decrease computational time drastically 
for the time increment can be set as a factor of the laser radius. 
Irwin et al. [31] used a 3D Goldak track-scale heat input model 
which could predict the distortion within the component with 
a precision of 10%. They report a computational reduction by 
factor of 100.  Luo et al. [30] developed a 2D Gaussian track-
scale input to predict temperature field during SLM of SS316L 
which reduce computational time by 70%. The model has a 
10% precision for predicting the temperature field while 
having an error of 10 ~25% for molten pool dimension 
prediction. Tangestani et al. [33] developed a 3D 
exponentially-decaying track-scale model for LPBF process to 
consider the depth to which heat penetrates within the powder. 
The model accounts for the effect of powder state during the 
simulation. They report a computational reduction by factor of 
300 and higher. Also, a deviation of 5μm predicting the melt 
pool depth and a 5% error while predicting the temperature 
distribution below the solidus temperature was reported. 
Although the model developed by Tangestani et al. [33] uses 
an isotropic thermal conduction, it still lacks the precision to 
accurately predict the melt pool dimensions specially the 
width. On top of that the material state transition problem 
during the track-scale model has not been addressed 
practically. Additionally, to the writer’s knowledge the track-
scale model has not yet been used in conjunction with the 
anisotropic thermal conduction model to predict the thermal 
history and the melt pool dimensions. 

The primary objective of this paper is to create a track-scale 
model incorporating the anisotropic thermal conduction 
model. This model aims to strike a balance between efficiency 
and accuracy, allowing for the prediction of thermal histories 
and melt pool dimensions across a wide range of process 
parameters. A practical solution to the track-scale phase 
transition problem is provided. Calibration method of the 
anisotropically enhancement factors based on the laser 
parameters is presented. In the end, an analysis is conducted 
on the predicted molten pool geometries, nodal temperatures, 
and cooling rates. 
 
2.	EXPERIMENTAL	METHODOLOGY	

  
2.1.	MATERIAL	COMPOSITION	
	
This research utilizes commercial gas-atomized 316L stainless 
steel powder supplied by Carpenter Technology Corporation. 
The powder exhibits a particle size distribution ranging from 
15 to 45μm, with an average size of 30μm. A relative density 
of 0.6 was considered for the powder. The nominal 
composition of the powder is 17.7% Cr, 12.7% Ni, 2.36% 
Mo, 0.65% Mn, 0.62 Si, 0.1% N, 0.03% O, 0.022% C, 
0.02% Cu, 0.007% P, 0.005% S and the balance is Fe. The 
powder used is shown in Figure 1-(a). The picture was taken 
using Tescan Vega3 SEM. 
 
2.2.	EXPERIMENTAL	PROCEDURE	
 
To verify the material model's accuracy, a series of Design of 
Experiment (DOE) trials were performed. The DOE was 
executed using the Aconity MIDI system, which is equipped 
with a single-mode fiber laser capable of delivering a 
maximum laser power of 1000W. In order to verify the heat 
transfer model's accuracy, a sequence of individual tracks was 
printed onto a 10mm x 10mm x 10mm plate using SS316L 
powder. 30 distinct process parameter combinations were used 
to print a total of 150 single tracks on a 30µm powder layer 
thickness. To minimize procedure error, the experiment was 
run five times for each set of process parameters. Laser power 
and speed were the investigated parameters in the mentioned 
DOE. The laser power was adjusted within the range of 80W 
to 800W, while the laser speed spanned from 160mm/s to 
4,000mm/s. 
 
2.3.	EXPERIMENTAL	MEASUREMENT	
	
To be able to validate the simulations with experiment, melt 
pool geometries formed during the single tracks need to be 
investigated. To do so, cross sectional area of the single tracks 
is observed under an optical microscope where the dimensions 
are measured. The measurements were competed using 
Keyence VHX-5000. The cross sections are ground and 
polished before the observation. The extent of intrusion into 
the pre-existing solidified substrate is referred to as depth, 
while the separation between the two extremities is termed 
width. Figure 1-(b) shows a cross sectional view of the melt 
pool and the dimension measurement.
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Figure 1. (a) SS316L powder used for fabrication (b) melt pool geometry and dimension measurement. 

 
3.	Heat	Transfer	Model	
	
The governing equation employs the 3D transient heat transfer 
equation given by Fourier series which is stated as Eq.1 [34]. 
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Where kx, ky and kz represent the thermal conductivities along 
their respective directions, ρ denotes density, C indicates 
specific heat, T is Temperature, t signifies time and Q is the 
internal heat generation per unit volume. 
Convective heat losses were considered as shown in Eq.2. 
 

Qc= ℎ௖ሺ𝑇 െ 𝑇଴ሻ (2) 

 
Where ℎ௖ ൌ 15 W/m2, is the convective heat transfer 
coefficient. 
Radiative heat losses were accounted for using Stefan-
Boltzmann law presented in Eq.3. 
 

Qr ൌ 𝜎𝜀ሺ𝑇ସ െ 𝑇଴
ସሻ (3) 

 
Where 𝜎 ൌ 5.67 ൈ 10ି଼ W/m2K4 represents the Stefan-
Boltzmann constant and 𝜀 ൌ 0.5 denotes the emissivity. 𝑇଴ in 
Eq.2 and Eq.3 is the ambient temperature (25°C). 
 
3.1.	LASER	HEAT	SOURCE	MODELING	
	
In order to achieve precise simulation of the LPBF process, a 
material model capable of replicating the phase transitions 
from powder to liquid and from liquid to solid states is 
mandatory. Furthermore, capturing the heat input 
characteristics accurately is essential for reaching acceptable 
results. This paper employs two distinct heat source models to 
strike a balance between precision and effectiveness which are 
the exponentially decaying and the track-scale models which 
we will refer to them as ED and HL model for convenience. 
First the ED model is presented as a reference for calibrating 

the HL model which will then be used to reach more time 
efficient simulations while having acceptable precision. 
 
3.1.1.	ED	HEAT	SOURCE	MODEL	
	
In this model, the laser's thermal energy input is depicted as a 
heat source having a Gaussian distribution that progressively 
diminishes as it moves through the depth of the powder. The 
energy input is described in Eq.4 [33]. 
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Where Q is the input energy, η represents the absorption 
coefficient, and P denotes the laser power. x, y, and z represent 
the local coordinates. rl is the laser radius. The energy 
penetrated through the powder is determined using the H 
parameter which is equal to the powder layer thickness [35]. 
 
3.1.2.	HL	HEAT	SOURCE	MODEL	
	
In the HL model, the ED heat input is integrated across a time 
step. As a result, Eq.5 is formed. 
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where Δt indicates time increment, t0 denotes time at 
beginning of the increment and Q represents heat input model 
of the beam-scale source. Upon substituting Eq.4 into Eq.5, 
the resulting expression for the moving HL heat input in the x-
direction, aligned with the laser scanning direction, is as 
follows [33]: 
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Where the erf corresponds to the error function. xstart and xend 
denote the initial and final positions of the laser in the 
beginning and end of the increment and Δt is the time 
increment. The "C" parameter needs to be calibrated based on 
the ED model for the use of track-scale heat input model will 
cause the thermal history to drop as discussed by Tangestani 
et al. [33]. Utilizing a track-scale heat input model, as 
highlighted by researchers, would result in a notable reduction 
in computational time [31, 33]. 

 
3.2.	FINITE	ELEMENT	MODEL	IMPLEMENTATION	
	
The heat transfer analysis is carried out using ABAQUS, a 
commercial finite element software. The two heat input 
models are incorporated into ABAQUS through the utilization 
of the DFLUX subroutine which applies the heat flux in 
accordance with Eq.4 and Eq.6 based on the spatial position 
of the laser at every increment. A domain measuring 2mm x 
0.25mm x 0.5mm is established to assess the melt pool 
dimensions formed in single track simulations for both the ED 
and HL heat input models. Only half of the geometry is 
modeled utilizing symmetry for computational efficiency.  
The dimensions are chosen such that stable melt pools could 
be formed during the simulation and the layer thickness was 
fixed at 30µm. The part is meshed using DC3D8 elements for 
the entire geometry. The model uses a mesh algorithm for 
further computational efficiency. The regions closely 
interacting with the laser are discretized with elements of 
dimensions measuring 25μm along the x-direction, 10μm 
along the y-direction, and 10μm along the z-direction and the 
element dimensions in the coarser regime are 100μm, 40μm 
and 95μm respectively. Figure 2 shows a view of the single-
track model used for melt pool dimension determination for 
different process parameters and heat input models. 
 
3.3.	MATERIAL	PROPERTIES	
	
To take the phase transition during the SLM process into 
account, temperature and state properties are employed for 
both solid and powder state. 
Eq.7 is used to relate the thermal conductivity of powder and 
solid state as a function of porosity [34]. 
 

kp=ሺ1-φሻ4ks (7) 

 
Where kp and ks represent thermal conductivities of the 
powder and solid state, and φ, is porosity. Similarly, Eq.8 
illustrates powder and solid phase density dependence on 
porosity. 
 

ρp=(1-φ)ρs (8) 

 
Where ρp and ρs denote densities of powder and solid state, 
and φ, is porosity.  
Properties of SS316L is illustrated in Figure 3. As shown in 
Figure 3-(b), specific heat is the same for both states because 
it has no dependance on mass whereas thermal conductivity 
relies heavily on the porosity of the powder. Therefore, both 
values for powder and solid state are plotted for easier use in 

Figure 3-(a). The density values are presented only for the 
solid state. 
Additionally, the sudden rise in specific heat capacity between 
solidus and liquidus temperatures, caused by latent heat is 
replaced with a gradual increase above the melting 
temperature (1372°C) to avoid convergence failure during the 
analysis while keeping acceptable temperature history 
predictions. 
To improve the accuracy of melt pool dimension predictions, 
it is imperative to consider the impact of melt pool convection 
induced by Marangoni flow. 
Anisotropically enhancement thermal conductivity method 
can be employed to replicate convection during laser melting 
which can be expressed as Eq.9 [25].  
 

𝑘௫ ൌ 𝜓௫𝑘 , 𝑘௬ ൌ 𝜓௬𝑘 , 𝑘௭ ൌ 𝜓௭𝑘 (9) 

 
Where 𝜓௫, 𝜓௬, 𝜓௭ are the enhancement factors of thermal 
conductivity 𝑘. It’s been well established these factors are 
dependent on laser parameters as well as temperature shown 
in Eq.10 [36]. 
 

ቊ
𝜓x,𝜓y,𝜓z=1,                                  T <Tmelting

𝜓x=1, 𝜓y=fyሺP,vሻ,𝜓z=fzሺP,vሻ,      T ≥Tmelting
 (10) 

 
The subsequent equation asserts that the powder and solidified 
material states remain unaffected by the anisotropically 
enhancement factors, and thermal conduction remains 
consistent in all directions. However, the thermal conductivity 
of the liquid state is heightened when fluid flow is present. The 
enhancement is present in width and depth directions. Thermal 
conduction along the length direction is kept unchanged.  
The following equations have been adapted from Zhang et al. 
[36] for anisotropically enhanced coefficients. Eq.11 shows 
the relation of the depth factor. 
 
 

 
Figure 2. The 3D model of single track. Powder layer 
thickness is 0.03mm and the substrate has a 0.47mm thickness. 
The line shown in the figure shows the laser scanning 
direction. 
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The laser speed has a more pronounced impact on the melt 
pool width. Eq.12 illustrates the relation of the width factor. 
 

𝜓௬ ൌ ൜
𝑎ଶ𝑣 ൅ 𝑏ଶ,    𝑣 ൑ 𝑣௔
         1,         𝑣 ൐ 𝑣௔

 (12) 

 
In the following equations 𝑎ଵ, 𝑏ଵ, 𝑎ଶ, 𝑏ଶ and 𝑣௔ are 
coefficients which must be determined after calibrating the 
model using experimental evaluation. Eq.12 is independent of 
laser power, in contrast to Eq.11, which does not account for 
the expected influence of laser power on the melt pool width. 
This is due to small range of laser power (50 Watts)  studied 
in the work conducted by Zhang et al. [36] which is not the 
case in the following research. To address this problem, Eq.12 
is defined in discrete laser power values base on experimental 
data. Interpolations will then be used to calculate general 
factors for general laser parameter values. 
 
3.3.1.	ANISOTROPIC	COEFFICIENTS	CALIBRATION	
	
To calibrate the anisotropic coefficients, the 30 experimental 
data sets are classified into two groups. The 1st set include 
process parameters having constant laser energy density which 
consists of 20 data sets. The 2nd set includes process 
parameters having constant laser speed which consists of 10 

data sets. The 1st data set will be used to calibrate the 
anisotropic heat conduction model.  The 2nd data set will then 
be used to validate the calibrated model. 
In order to establish model calibration, the anisotropically 
enhanced factors are initially adjusted empirically to achieve 
the closest agreement between the molten pool dimensions 
generated in the simulation and the corresponding 
experimental data. Once the validity of the results has been 
verified, the coefficients are fit according to the initially 
defined functions (Eq.11 & Eq.12). Figure 4-(a) and Figure 
4-(b) show the obtained curves along depth and width 
directions. Table 1 shows the values obtained for the 
coefficients in Eq.11 & Eq.12. five sets of coefficients have 
been presented for the five curves available for the width 
direction and one set of coefficients has been presented for the 
depth direction. 
 
3.4.	MATERIAL	SATE	TRANSITION	
	
Throughout the SLM process there is a continuous state 
transition occurring among powder, solid, and liquid phases 
which are all modeled separately in the developed model. To 
incorporate the state transition and anisotropically enhanced 
thermal conduction, UMATHT subroutine is used in 
ABAQUS. 
The state of material is controlled using an index. If the index 
attains a value of zero, it signifies that material is in powder 
state, whereas an index value of one indicates that material is 
in either solid or liquid state. Properties is then chosen 
respectively.

 

 
Figure 3. Temperature dependent properties. (a) Thermal conductivity (b) Specific heat and density [34]. 

 

 
Figure 4. Enhancement factor plots (a) Along depth (b) Along width. 

(a) 

(a) 

(b) 

(b) 
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Table 1. Enhancement factors' coefficient values along depth and width. 
𝒂𝟏 𝒃𝟏 𝒂𝟐 𝒃𝟐 𝒗𝒂 

0.0453 1.5652  Laser Power (W) 
 

 
 

 

-0.0009 1.25 266.67 80 
-0.0014 2.25 866.67 260 
-0.0023 3.5 1100 440 
-0.0006 2.37 2066.67 620 
-0.0003 2.1 2666.67 800 

	

 
Figure 5. Contour plot during SLM process. (a) Material State contour (b) Temperature contour. 

 
Figure 5-(a) illustrates the material state contour in the SLM 
simulation. The powder state is shown in blue color whereas 
solid and liquid states are shown in red color. 
Although liquid and solid states have the same index, 
conduction inside the melt pool is being enhanced separately 
using the anisotropically enhancement factors. The area 
affected by the enhancement factors is shown in Figure 5-(b) 
which shows the temperature contour with the grey color 
representing the melt pool. 
USDFLD subroutine and field-dependent data have been 
effectively utilized for modeling the SLM process in 
ABAQUS. However, utilizing this subroutine as a means to 
simulate the state transition, makes it such that the reference 
temperature for phase transition is the temperature at the 
beginning of the increment. This causes the phase transition to 
be consistently lagging by a single time increment relative to 
the applied heat source as demonstrated by Tangestani et al. 
[33]. The effect of this phenomenon becomes significant for 
the HL heat input model as the time increments are large. A 
solution was proposed by Tangestani et al. [33] using the 
energy absorption but it’s not a practical one when it comes to 
predicting the molten pool geometry accurately. UMATHT 
allows the user to have access to the temperature increment as 
well as temperature at the beginning of the increment which 

could be used to calculate the temperature at the end of the 
increment. By using this temperature as the phase transition 
reference, the phase transition problem could be solved. 
Necessary number of iterations must be allowed to achieve 
equilibrium within the HL model. This is due to severe non-
linearity in a single time increment. 
The density used belongs to the current state of the material as 
well which helps to further improve the thermal history 
predictions when utilizing the UMATHT subroutine as 
demonstrated by Jeong et al. [37]. 
 
4.	RESULTS	&	DISCUSSION	
 
4.1.	MELT	POOL	GEOMETRY	ANALYSIS	
 
The laser radius of 100µm and an absorption coefficient (η) of 
0.36 was chosen based on works done in the literature [34, 38]. 
Figure 6-(A) through Figure 6-(J) show the melt pool 
dimensions predicted by simulation compared experimentally 
in different process parameters. The error margin denotes the 
uppermost and lowermost values recorded during the 
experimental observations.

(a) 

(b) 
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Figure 6. Melt pool dimensions comparison between experimental and ED model in different Laser speeds and powers. (A) and (B) 
80W, (C) and (D) 260W, (E) and (F) 440W, (G) and (H) 620W and (I) and (J) 800W.

(A) 

(C) 

(E) 

(G) 

(I) 

(B) 

(D) 

(F) 

(H) 

(J) 
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Table 2 demonstrates the average rate at which the melt pool 
dimensions change with altering laser parameters. The change 
rates are presented 100 times bigger than the nominal value to 
have a more sensible physical meaning. This means the values 
are presented as the laser power or laser speed increase by 
100W or 100mm/s. 
 Using the experimental results, it’s concluded that melt pool 
width and depth increase at an average rate of 19.33

ఓ௠

ௐ
 and 

11.07
ఓ௠

ௐ
 with laser power. However, the dimensions decrease 

at an average rate of 5.832
ఓ௠

ௐ
 and 5.75

ఓ௠

ௐ
 with laser speed. 

This deduction demonstrates that laser power exerts a notably 
more substantial influence on melt pool size when compared 
to laser speed. This result is consistent with the conclusions 
achieved by other researchers [31]. 
The aspect ratio of the experimentally printed melt pools has 
also been analyzed which is an indication of the heat transfer 
mode inside the molten pool. With lower values having the 
conduction mode and the higher values having the convection 
(keyhole) mode. The shift from conduction to convection 

mode typically takes place when aspect ratio values reach 0.5 
or exceed this threshold for SS316L [39]. Figure 7-(a) 
illustrates a scatter plot which indicates melt pool dimensions 
for various laser parameters. The parameters are categorized 
based on energy density levels. The data sets which don’t have 
particular energy densities are marked as “Random Energy 
Density”. With the dashed line having a slope of 0.5, the points 
above the line can be categorized as keyhole heat transfer and 
the points below as conduction heat transfer mode. 
The heat transfer mode can be confirmed using the molten 
pool geometry. When bell-shaped melt pools are observed, the 
heat transfer is governed by convection. When shallow and 
wide molten pool shapes are observed, the heat transfer is 
governed by conduction. Figure 7-(b) illustrates an 
experimental bell-shaped molten pool geometry. Figure 8 
illustrates the simulated melt pool having the same bell shape 
geometry which establishes the conclusion that the FEM 
model possesses the capability to precisely forecast melt pool 
geometry when the dominant heat transfer mode is governed 
by convection in the process.

 

Table 2. Average melt pool width and depth change rate with laser parameters increase. 
 Change Rate with Laser Speed Change Rate with Laser Power  

 100˟Width ሺ
ఓ௠

௠௠/௦
ሻ 100˟ Depth ሺ

ఓ௠

௠௠/௦
ሻ 100˟ Width ሺ

ఓ௠

ௐ
ሻ 100˟ Depth ሺ

ఓ௠

ௐ
ሻ  

Experimental -5.832 -5.75 19.33 11.07  
ED Model -9.856 -5.248 19.507 11.82 
HL Model -11.172 -6.878 17.485 11.645 

 

 

 
Figure 7. (a) Molten pool dimension scatter plot (b) Bell shape melt pool cross section with aspect ratio of 0.52. 

 

 
Figure 8. Simulated molten pool showing a bell shape dimension for the melt pool geometry.

(a) (b) 
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4.2.	ED	MODEL	EVALUATION	
 

The approach employed to compute the dimensions of the 
molten pool generated in the simulation is adopted from the 
existing literature [33, 40]. The cross-sectional shape of the 
molten pool is established by adjusting the contour range, 
wherein the maximum contour value is designated as the 
melting temperature. Following the extraction of the cross-
section, the width and depth are measured and compared with 
the experimental results. The dimensions are illustrated in 
Figure 8. 
Figure 6 illustrates the disparity between the experimental and 
simulated results. In constant laser power, the melt pool 
dimensions must decrease as the laser speed increases which 
can be seen for the simulated results. However, not all 
experimental data follow this trend which is caused due to 
experimental errors during the SLM process. 
The average rate at which melt dimensions increase with 
respect to laser power increase is 19.507

ఓ௠

ௐ
 and 11.82

ఓ௠

ௐ
. 

Conversely the average decrease rate with respect to the laser 
speed increase is 6.174

ఓ௠

ௐ
 and 6.08

ఓ௠

ௐ
 which matches the 

experimental results. The average difference regarding the 
melt pool width and depth is 16μm and 10μm. This deviation 
is acceptable due to the error margin present in the 
experimental results. We can affirm that the results obtained 
are reliable, and the model can be relied upon for predicting 
the geometrical characteristics of the melt pools formed during 
the process. 
 

4.3.	HL	MODEL	CALIBRATION	
 

According to Irwin et al. [31] the time increment is defined in 
terms of parameter τ which represents the laser travel distance 
with respect to the laser spot diameter. The representation is as 
follows: 
 

𝜏 ൌ
𝑣௦𝛥𝑇
𝑟௟

 (13) 

 

Where 𝑣௦ is laser speed, 𝑟௟ denotes radius of laser while 𝛥𝑇 
represents time increment. According to Eq.13, τ represents 
the distance laser travels in each increment compared to the 
laser radius. For instance, if τ=5, the travel distance of the laser 
is 5 times the laser radius in a single increment which will lead 
to significant simulation time reduction. The ED model is used 
as a reference for the calibration of the HL model as discussed 
by Tangestani et al. [33]. In order to achieve this, the "C" 
parameter is adjusted in a manner that minimizes the error in 
dimension prediction of the molten pool in HL and ED model. 
The cross section consisting of the largest liquid region is 
considered as the reference section in the HL model. To do so, 
a python script was developed to approximate the maximum 
width and depth value based on the melting temperature.  The 
"C" parameter is configured to a value of 1.5 as it demonstrates 
the highest level of concordance with the ED model. The 
dependence of "C" parameter on time increment has not been 
considered. So, we are assuming a fixed travel distance of 5 
times the laser radius throughout the simulation. Hence, it’s 
obvious that if τ≠5, then the chosen "C" parameter will make 
the model either accommodate extra heat (τ<5) or less heat 
(τ>5). This issue was avoided by carefully choosing the 
number of iterations. 

 

4.4.	HL	MODEL	EVALUATION	
	

4.4.1.	MELT	POOL	GEOMETRY	ANALYSIS	
	

First the molten pool geometry is validated with the ED model 
and the experimental data. Figure 9-(A) through Figure 9-(J), 
illustrate molten pool dimensions comparison between the two 
models and experimental data. The figures show trend of melt 
pool dimensions with respect to laser speed in different laser 
power values. First the two models are compared with each 
other. 
The greatest disparity between the two models in terms of 
width and depth values amounts to 11μm and 6μm, 
respectively. The mean discrepancies between the two models 
are approximately 5μm for both width and depth, indicating a 
degree of consistency between the ED and HL models. 
The average change rate of melt pool dimensions in the HL 
model has also been investigated. The increase rate of width 
and depth with respect to laser power is 17.485

ఓ௠

ௐ
 and 

11.645
ఓ௠

ௐ
. The decrease rate with respect to laser speed is 

7.19
ఓ௠

ௐ
 and 7.968

ఓ௠

ௐ
. 

When comparing the HL model experimentally, the average 
deviations for width and depth are approximately 20μm and 
9μm, respectively. The results are just a bit divergent 
compared to the ED model. Still the error margin of the 
experimental data is met. The deduction affirms that the HL 
model is equally precise as the ED model but offers enhanced 
efficiency.  
The results also conclude that the use of the anisotropic model 
in conjunction with the HL model is able to reach acceptable 
error margin for both width and depth directions. This was not 
the case for the work conducted by Tangestani et al. [33] where 
although the model showed acceptable agreement for depth of 
the molten pool, the accuracy dropped drastically for width of 
the melt pool. This could lead to errors regarding some 
applications such as component porosity measurements where 
precise melt pool geometries are required. 
 

4.4.2.	COMPUTATIONAL	COST	
	

The HL model is more time efficient compared to the ED 
model [30, 31]. The simulation time is predominantly 
determined by the quantity of increments and iterations. The 
ED model demands a substantial number of increments which 
results in extended computational time. The developed HL 
model requires small number of increments but in return larger 
number of iterations to reach equilibrium criteria within the 
elements during the analysis. An average of about 40 number 
of iterations are needed for the equilibrium criteria to be met 
in each increment. On average, HL model exhibits a 
computational speed that is approximately 100 times faster 
than that of the ED model. 
 

4.4.3.	MATERIAL	STATE	
 

The importance of the HL model becomes particularly evident 
when modeling component-sized models, where the use of 
beam-scale heat inputs is not feasible. Modeling the porosity 
within the component is one of these cases where precise 
prediction of the material state during the analysis is required. 
The next section focuses on material state comparison between 
ED and HL model. 
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Figure 9. Melt pool dimensions comparison between experimental, ED model and HL model in different Laser speeds and powers. 
(A) and (B) 80W, (C) and (D) 260W, (E) and (F) 440W, (G) and (H) 620W and (I) and (J) 800W.

(A) 

(C) 

(E) 

(G) 

(I) 

(B) 

(D) 

(F) 
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To compare the material state between the two models, a 
python script is developed which counts the number of solid-
state integration points in the powder layer of the single track. 
This indicates the number of elements which undergo phase 
transition during the simulation. This number can then act as a 
reference to compare the error regarding the material state in 
the two models. 
Figure 10-(A) and Figure 10-(B) show the comparison of 
number of solid-state integration points in the single-track 
model for the ED and the HL model. These figures are 
presented for the worst case (80W) and the best case (440W) 
regarding the errors. 
Figure 10-(C) illustrates the error present between the two 
models. It is concluded that the highest error regarding the 
worst case is 20%. The data for the best case all fall below 
10%.  The reason for this error rise in the 80W case is analyzed 
in the following. 
No matter how well the HL model is calibrated, there will 
always be an error present in the material state between the 
two models. This occurs due to small time increments in the 
ED model, which allows the largest cross-section of the melt 
pool to exert its influence across the entire geometry. but the 
same can’t be said about the HL model. 
In calibration of the track-scale, the largest cross section was 
used to calibrate the HL model with respect to the ED model. 
This means that only the calibrated cross section is identical to 
the ED model. However, when moving away from calibrated 
cross section, the dimensions progressively diminish until 
reaching the laser's initial point at the start of the increment. 
Hence, the deviation is caused. 
This in particular affects the HL model in lower laser power 
values for the melt pool dimensions are generally smaller, 
hence the melt pool dimensions collapse faster in the HL 
model. This is the main cause of error for the 80W case 
illustrated in Figures 10-(C). 

A possible solution is to use a smaller cross section as the 
reference for the HL model which could lead to over 
estimation of the temperature history and melt pool 
geometries. 
Though the formation of error is inevitable, the average error 
percentage regarding the material state transition in all cases is 
about 10% which yields acceptable accuracy with regards to 
the ED model. 

4.4.4.	SINGLE‐TRACK	TEMPERATURE	

Analyzing the track temperature during the simulation is an 
important criteria of crack formation during SLM process. 
This is because material undergoes phase transition and 
solidifies which determines the possibility of crack formation 
during the process. As a result, temperature history during the 
process must be compared between ED and HL model. To do 
so, nodal temperatures along scan direction are compared. The 
top surface of the substrate has been chosen as the reference 
between the two models for the comparison which would lead 
to comparison of melt pool length as well as the temperature 
history. 
Temperature history is exported for four different process 
parameters having energy densities of 0.2, 0.3, 0.4 and 0.5 
J/mm. The laser power is kept a constant of 260W and four 
different laser speeds have been considered. The nodal 
temperatures along the laser path at the top of the substrate are 
shown in Figure 11-(A) through Figure 11-(D). As energy 
density increases, the maximum temperature experienced 
during the process rises as well. 
As was reported by Tangestani et al. [33] the HL model does 
not predict the maximum temperature reached in ED model for 
heat input is integrated over time increment. An average error 
of 15% is concluded between the two models regarding 
maximum temperature.

Figure 10. Number of integration points comparison between ED and HL model for (A) worst case (80W) and (B) best case (440W). 
(C) Error percentage between ED and HL model for worst and best case. 

(A) (B)

(C)
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Figure 11. Comparison of nodal temperature along laser path between the Ed and HL model. Laser power 260W and laser speeds (A) 
1300mm/s (B) 866mm/s (C) 650mm/s (D) 520mm/s. 

As for the melt pool length, the horizontal line represents the 
melting point of the SS316L and the portion above the line 
represents the melted region. The results conclude that melt 
pool length average error is about 35%. This is attributed to 
gradual but modest increase in temperature profile illustrated 
in Figure 11-(A) through Figure 11-(D). 
Another aspect of temperature history that we've examined is 
how the models perform when melt pool begins to solidify. As 
temperature drops, the two plots start to converge. The error is 
calculated around 1372°C which is about the temperature 
where solidification occurs and is a critical point for micro 

cracking initiation. An average error of 13% is calculated 
between the two models in the range of 1350 to 1400°C. 

4.4.5.	COOLING	RATE	

Cooling rate governs grain size during solidification, 
consequently leading to thermal stresses in the fabricated 
components. [35]. Therefore, the rate at which the part is 
cooled needs to be captured accurately. Figure 12-(A) through 
(D), show the cooling rates of the ED model in comparison 
with the HL model.

Figure 12. Comparison of cooling rates. Laser power 260W and laser speed (A) 1300mm/s (B) 866mm/s (C) 650mm/s (D) 520mm/s.

(A) (B)

(C) (D)

(A) (B)

(C) (D)

30
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The same parameters as Figure 11 were considered. Melt pool 
boundary is chosen as case of study for it’s a critical point in 
crack formation. The maximum cooling rate is in order of 
10଺°C/s which is consistent with results reported by Liu et al. 
[35]. 
Figure 12 also illustrates cooling rate decreases rapidly until 
it reaches the steady state around 3°C/s to 7°C/s with 
increasing energy density after about 1 sec. It can also be 
inferred that augmenting the laser speed results in an increase 
in the maximum cooling rate. This is attributed to the shorter 
time intervals between each pass of the laser through the 
material. 

5. CONCLUSION	

In this paper, the well stablished track-scale model is used in 
conjunction with the anisotropic thermal conduction model to 
develop an efficient yet accurate material model which is able 
to predict temperature history and melt pool dimensions in a 
wide range of process parameters with acceptable precision in 
the SLM process. A solution to the phase transition problem 
during simulation of LPBF process while using track-scale 
model is provided and the calibration methodology of the 
anisotropic thermal conduction is presented. 
First ED model was validated experimentally regarding melt 
pool dimensions. The results showed that average difference 
is 16μm and 10μm in width and depth while capturing the error 
margin in almost all of the experimental cases. ED and HL 
model are compared in terms of melt pool geometry, 
computational time, material phase transition, temperature 
profile and cooling rate. A conclusion of the results obtained 
is as follows 

1- The melt pool dimensions comparison conclude that the two 
models have an average difference of about 5μm which yields
a significant improvement compared with the previous work
done on track-scale model of LPBF process.

2- In average HL model is about 100 times faster than ED
model which makes it more efficient.

3- Material transition comparison during the process
concludes that the maximum error between the two models is
about 20% which occurs in the lowest laser power level. The
average error is about 10% which makes the HL model a
viable substitute.

4- Temperature profile comparison yields an average
reduction of 15% regarding the maximum temperature in the
HL model while yielding an average increase of 35%
regarding melt pool length during simulation.  The
temperature after cooling was compared around the
solidification temperature. An average error of 13% was
concluded around the solidus temperature.

5- Cooling rate analysis yields values in order of 10଺°C/s
which is close to values reported by researchers. The cooling
rate reaches steady state values after about 1 sec. The steady
state cooling rate values increase with respect to the energy
density implemented. The initial cooling rate values increase
by increasing the laser speed due to smaller time intervals.

6- The HL model is also compared to the experimental results.
An average difference of 20μm in width and 9μm is concluded 
while capturing the error margin in almost all of the
experimental cases, same as the ED model. Concluding that
the HL model can now be a viable substitute for the ED model
which makes the simulations more efficient yet maintaining
accuracy which can be used in component scale models.
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