A predictive approach for thermal fatigue crack growth behaviour of shot peened Ni75 alloy

Authors

  • Behnam Salehnasab Author
  • J Marzbanrad School of Automotive Engineering, Iran University of Science and Technology Author
  • E Poursaeidi Mechanical Engineering Department, Faculty of Engineering, University of Zanjan Author

DOI:

https://doi.org/10.62676/4wbvcj64

Keywords:

Shot peening treatment, Thermal fatigue, Crack propagation, Fatigue life model, Residual stress

Abstract

This study presents an approach to predict the effects of shot peening on the thermal fatigue crack propagation behaviour of nickel-based Ni75 alloy. For this purpose, from an engineering perspective, comprising experimental tests data and finite element simulations, were used to estimate the thermal fatigue crack propagation behaviour of the material. Despite many other studies that have been performed to evaluate the fatigue crack growth behavior, only a few  were previously conducted on thermal fatigue damage in different types of materials. Furthermore, the interaction of shot peening treatment and thermal fatigue crack propagation behavior is rare. Comparison of the results from the experimental test and FE model showed that the model appropriately predicted the thermal fatigue crack growth behaviour. The fracture mechanism evaluation showed that the compressive residual stress, induced by shot peening treatment, reduced both the crack opening and secondary crack branching. Also, the results show the crack initiation life of the shot peened specimen (SP) is about 2.5 times more than the non shotpeened specimen (NSP). Moreover, the microscopy analysis showed that the failure mechanism of the NSP and SP specimens were transgranular and a combination of intergranular and transgranular cracking, respectively

References

1. J. Zhang, Z. Zhao, Y. Kong, Z. Zhang, Q. Zhong, Crack initiation and propagation mechanisms during thermal fatigue in directionally solidified superalloy DZ125, International Journal of Fatigue 119 (2019) 355-366

2. T. Goswami, Low cycle fatigue—dwell effects and damage mechanisms, International Journal of Fatigue 21(1) (1999) 55-76.https://doi.org/10.1016/S0142-1123(98)00056-5

3. B. Salehnasab, E. Poursaeidi, S.A. Mortazavi, G.H. Farokhian, Hot corrosion failure in the first stage nozzle of a gas turbine engine, Engineering Failure Analysis 60 (2016) 316-325.https://doi.org/10.1016/j.engfailanal.2015.11.057

4. B. Salehnasab, J. Marzbanrad, E. Poursaeidi, Transient thermal fatigue crack propagation prediction in a gas turbine component, Engineering Failure Analysis 130 (2021) 105781.https://doi.org/10.1016/j.engfailanal.2021.105781

5. K. Kikuchi, K. Ue, Y. Kudo, M. Saito, Crack propagation in first wall by thermal fatigue and creep, Fusion Engineering and Design 49-50 (2000) 229-234.https://doi.org/10.1016/S0920-3796(00)00363-X

6. J. Yang, Q. Zheng, X. Sun, H. Guan, Z. Hu, Thermal fatigue behavior of K465 superalloy, Rare Metals 25(3) (2006) 202-209.https://doi.org/10.1016/S1001-0521(06)60040-5

7. F. Meyer-Olbersleben, N. Kasik, B. Ilschner, F. Rézaï-Aria, The thermal fatigue behavior of the combustor alloys In 617 and HAYNES 230 before and after welding, Metallurgical and Materials Transactions A 30(4) (1999) 981-989.10.1007/s11661-999-0151-4

8. E. Poursaeidi, H. Bazvandi, Effects of emergency and fired shut down on transient thermal fatigue life of a gas turbine casing, Applied Thermal Engineering 100 (2016) 453-461.https://doi.org/10.1016/j.applthermaleng.2016.02.049

9. E. Poursaeidi, A. Kavandi, K. Vaezi, M.R. Kalbasi, M.R. Mohammadi Arhani, Fatigue crack growth prediction in a gas turbine casing, Engineering Failure Analysis 44 (2014) 371-381.https://doi.org/10.1016/j.engfailanal.2014.05.010

10. E.k. Yousefabad, S. Asadi, P. Savadkouhi, O. Sedaghat, A. Bakhshi, The effect of non-uniform combustion temperature profile on thermal fatigue cracking of an air-cooled gas turbine vane, Engineering Failure Analysis 105 (2019) 766-780.https://doi.org/10.1016/j.engfailanal.2019.07.008

11. D. Bombač, M. Gintalas, G. Kugler, M. Terčelj, Thermal fatigue behaviour of Fe-1.7C-11.3Cr-1.9Ni-1.2Mo roller steel in temperature range 500–700 °C, International Journal of Fatigue 121 (2019) 98-111.https://doi.org/10.1016/j.ijfatigue.2018.12.007

12. Z.Z. Li WANG, Shaohua ZHANG,Xiangdong JIANG,Langhong LOU,Jian ZHANG, Crack initiation and propagation around holes of Ni-based single crystal superalloy during thermal fatigue cycle, Acta Metall Sin 51(10) (2015) 1273-1278.10.11900/0412.1961.2015.00366

13. R. Vetriselvan, P. Sathiya, G. Ravichandran, Experimental and numerical investigation on thermal fatigue behaviour of 9Cr 1Mo steel tubes, Engineering Failure Analysis 84 (2018) 139-150.https://doi.org/10.1016/j.engfailanal.2017.11.005

14. B. Liu, B. Wang, X. Yang, X. Zhao, M. Qin, J. Gu, Thermal fatigue evaluation of AISI H13 steels surface modified by gas nitriding with pre- and post-shot peening, Applied Surface Science 483 (2019) 45-51.https://doi.org/10.1016/j.apsusc.2019.03.291

15. F. Qayyum, M. Shah, O. Shakeel, F. Mukhtar, M. Salem, F. Rezai-Aria, Numerical simulation of thermal fatigue behavior in a cracked disc of AISI H-11 tool steel, Engineering Failure Analysis 62 (2016) 242-253.https://doi.org/10.1016/j.engfailanal.2016.01.015

16. H. Pei, Z. Wen, Z. Wang, W. Gan, G.X. Lu, Z. Yue, Transient thermal fatigue crack propagation behavior of a nickel-based single-crystal superalloy, International Journal of Fatigue 131 (2020) 105303.https://doi.org/10.1016/j.ijfatigue.2019.105303

17. H. Pei, Y. Zhang, Z. Wen, J. Wang, X. Ai, Z. Yue, Crack initiation behavior of a Ni-based SX superalloy under transient thermal stress, Materials Science and Engineering: A 754 (2019) 581-592.https://doi.org/10.1016/j.msea.2019.03.112

18. H. Bazvandi, E. Poursaeidi, Effect of additional holes on crack propagation and arrest in gas turbine casing, Engineering Failure Analysis 111 (2020) 104443.https://doi.org/10.1016/j.engfailanal.2020.104443

19. M. Banaszkiewicz, Numerical investigations of crack initiation in impulse steam turbine rotors subject to thermo-mechanical fatigue, Applied Thermal Engineering 138 (2018) 761-773.https://doi.org/10.1016/j.applthermaleng.2018.04.099

20. L.B. Getsov, A.S. Semenov, I.A. Ignatovich, Thermal fatigue analysis of turbine discs on the base of deformation criterion, International Journal of Fatigue 97 (2017) 88-97.https://doi.org/10.1016/j.ijfatigue.2016.12.018

21. S. Mazlan, N. Yidris, S.S. Koloor, M. Petrů, Experimental and Numerical Analysis of Fatigue Life of Aluminum Al 2024-T351 at Elevated Temperature, Metals, 2020.

22. Z. Qin, B. Li, H. Zhang, T.Y.A. Wilfried, T. Gao, H. Xue, Effects of shot peening with different coverage on surface integrity and fatigue crack growth properties of 7B50-T7751 aluminum alloy, Engineering Failure Analysis 133 (2022) 106010

23. C. Wang, G. Wu, T. He, Y. Zhou, Z. Zhou, Numerical Study of Fatigue Crack Propagation in a Residual Stress Field Induced by Shot Peening, Journal of Materials Engineering and Performance 29(8) (2020) 5525-5539.10.1007/s11665-020-05029-9

24. Y. Wang, Y. Zhang, G. Song, W. Niu, Z. Xu, C. Huang, Effect of shot peening on fatigue crack propagation of Ti6Al4V, Materials Today Communications 25 (2020) 101430.https://doi.org/10.1016/j.mtcomm.2020.101430

25. B.Y. He, K.A. Soady, B.G. Mellor, G. Harrison, P.A.S. Reed, Fatigue crack growth behaviour in the LCF regime in a shot peened steam turbine blade material, International Journal of Fatigue 82 (2016) 280-291.https://doi.org/10.1016/j.ijfatigue.2015.03.017

26. N. Ferreira, P.V. Antunes, J.A.M. Ferreira, J. D. M. Costa, C. Capela, Effects of Shot-Peening and Stress Ratio on the Fatigue Crack Propagation of AL 7475-T7351 Specimens, Applied Sciences, 2018.

27. S. Li, W. Liang, H. Yan, Y. Wang, C. Gu, Prediction of fatigue crack propagation behavior of AA2524 after laser shot peening, Engineering Fracture Mechanics 268 (2022) 108477.https://doi.org/10.1016/j.engfracmech.2022.108477

28. F. Szmytka, M. Salem, F. Rézaï-Aria, A. Oudin, Thermal fatigue analysis of automotive Diesel piston: Experimental procedure and numerical protocol, International Journal of Fatigue 73 (2015) 48-57.https://doi.org/10.1016/j.ijfatigue.2014.11.011

29. D. Klobčar, L. Kosec, B. Kosec, J. Tušek, Thermo fatigue cracking of die casting dies, Engineering Failure Analysis 20 (2012) 43-53.https://doi.org/10.1016/j.engfailanal.2011.10.005

30. D. Mellouli, N. Haddar, A. Köster, A.M.-L. Toure, Thermal fatigue of cast irons for automotive application, Materials & Design 32(3) (2011) 1508-1514.https://doi.org/10.1016/j.matdes.2010.10.025

31. M. Fazarinc, T. Muhič, G. Kugler, M. Terčelj, Thermal fatigue properties of differently constructed functionally graded materials aimed for refurbishing of pressure-die-casting dies, Engineering Failure Analysis 25 (2012) 238-249.https://doi.org/10.1016/j.engfailanal.2012.05.016

32. H.-W. Song, G. Yu, J.-S. Tan, L. Zhou, X.-L. Yu, Thermal fatigue on pistons induced by shaped high power laser. Part I: Experimental study of transient temperature field and temperature oscillation, International Journal of Heat and Mass Transfer 51(3) (2008) 757-767.https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.035

33. D. Cong, H. Zhou, Z. Ren, H. Zhang, L. Ren, C. Meng, C. Wang, Thermal fatigue resistance of hot work die steel repaired by partial laser surface remelting and alloying process, Optics and Lasers in Engineering 54 (2014) 55-61.https://doi.org/10.1016/j.optlaseng.2013.09.012

34. V.S. Bhattachar, Thermal fatigue behaviour of nickel-base superailoy 263 sheets, International Journal of Fatigue 17(6) (1995) 407-413.https://doi.org/10.1016/0142-1123(95)00006-F

35. X. Luo, N. Dang, X. Wang, The effect of laser shock peening, shot peening and their combination on the microstructure and fatigue properties of Ti-6Al-4V titanium alloy, International Journal of Fatigue 153 (2021) 106465.https://doi.org/10.1016/j.ijfatigue.2021.106465

36. G. Khajuria, M.F. Wani, High-temperature friction and wear studies of Nimonic 80A and Nimonic 90 against Nimonic 75 under dry sliding conditions, Tribology Letters 65(3) (2017) 100.10.1007/s11249-017-0881-1

37. Special Metals Standard, Ni 75 Alloy, Special Metals Corporation, USA.

38. S. International, Shot Peening AMS2430S, SAE, 2012.

39. B. Salehnasab, E. Poursaeidi, Mechanism and modeling of fatigue crack initiation and propagation in the directionally solidified CM186 LC blade of a gas turbine engine, Engineering Fracture Mechanics 225 (2020) 106842.https://doi.org/10.1016/j.engfracmech.2019.106842

40. X.-K. Zhu, Numerical Calculation of Residual Stress Corrected J-Integral Using ABAQUS, ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, 2014.

41. Y. Lei, N.P. O'Dowd, G.A. Webster, Fracture mechanics analysis of a crack in a residual stress field, International Journal of Fracture 106(3) (2000) 195-216.10.1023/A:1026574400858

42. E. Maleki, G.H. Farrahi, K. Reza Kashyzadeh, O. Unal, M. Gugaliano, S. Bagherifard, Effects of Conventional and Severe Shot Peening on Residual Stress and Fatigue Strength of Steel AISI 1060 and Residual Stress Relaxation Due to Fatigue Loading: Experimental and Numerical Simulation, Metals and Materials International (2020).10.1007/s12540-020-00890-8

43. ZENCRACK User Manual, ZENTECH2019.

Downloads

Published

2023-08-06

How to Cite

A predictive approach for thermal fatigue crack growth behaviour of shot peened Ni75 alloy. (2023). Journal of Design Against Fatigue, 1(1). https://doi.org/10.62676/4wbvcj64