Experimental and Numerical Fracture Toughness Evaluation of Spiral Seam Weld of API X65 Steel
DOI:
https://doi.org/10.62676/2d4bh946Keywords:
Fracture toughness, API X65 steel, Spiral seam weld, SENT, GTN ModelAbstract
In this research fracture toughness of spiral seam weld of API X65 is measured through the ASTM E1820 standard recommendations. According to thin-wall pipe of API X65 in this research, specimen sizes could not satisfy the plain strain condition of ASTM E399 therefore, indirect method is accomplished by evaluating the crack tip opening displacement. According to the nature of welding procedure and inhomogeneous probable defects in the different regions of seam weld, δ-R curve with multi-specimen technique of single-edge notched bend (SENB) specimens is applied for test procedure in this research. The measured CTOD and K1C are 0.23 mm and 265 MPam3/2 respectively. Furthermore, Three-dimensional finite element method numerical evaluation of crack propagation with GTN model has been performed. Good agreement with the other researches was observed for CTOD and fracture toughness of tested material. The difference was about 10 percent.
References
1. Yang, Z. Z., W. Tian, Q. R. Ma, Y. L. Li, J. K. Li, J. Z. Gao, H. B. Zhang, and Y. H. Yang. Mechanical properties of longitudinal submerged arc welded steel pipes used for gas pipeline of offshore oil. Acta Metallurgica Sinica (English Letters) 21, no. 2 (2008): 85-93.
https://doi.org/10.1016/S1006-7191(08)60024-1
2. Ju, Jang-Bog, Jung-Suk Lee, and Jae-il Jang. Fracture toughness anisotropy in a API steel line-pipe. Materials Letters 61, no. 29 (2007): 5178-5180.
https://doi.org/10.1016/j.matlet.2007.04.007
3. Hashemi, S. H. Strength–hardness statistical correlation in API X65 steel. Materials Science and Engineering: A 528, no. 3 (2011): 1648-1655.
https://doi.org/10.1016/j.msea.2010.10.089
4. Kennedy, John L. Oil and gas pipeline fundamentals. 2nd ed. Pennwell Publ, Oklahoma. (1984).
5. Ju, Jang-Bog, Jung-Suk Lee, Jae-il Jang, Woo-sik Kim, and Dongil Kwon. Determination of welding residual stress distribution in API X65 pipeline using a modified magnetic Barkhausen noise method. International Journal of Pressure Vessels and Piping 80, no. 9 (2003): 641-646.
https://doi.org/10.1016/S0308-0161(03)00131-5
6. Dowling NE, Mechanical behavior of materials, 2nd ed. Prentice Hall Publ, New Jersey, 1999.
7. Zhu, Xian-Kui, and James A. Joyce. Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Engineering fracture mechanics 85 (2012): 1-46.
https://doi.org/10.1016/j.engfracmech.2012.02.001
8. Lee, Jung-Suk, Jang-Bog Ju, Jae-il Jang, Woo-Sik Kim, and Dongil Kwon. Weld crack assessments in API X65 pipeline: failure assessment diagrams with variations in representative mechanical properties. Materials Science and Engineering: A 373, no. 1-2 (2004): 122-130.
https://doi.org/10.1016/j.msea.2003.12.039
9. Nie, H., Ma, W., Xue, K., Ren, J., Dang, W., Wang, K., Cao, J., Yao, T. and Liang, X., 2021. A novel test method for mechanical properties of characteristic zones of girth welds. International Journal of Pressure Vessels and Piping, 194, p.104533.
https://doi.org/10.1016/j.ijpvp.2021.104533
10. ASTM standard E399, Standard test method for plane-strain fracture toughness of metallic materials, In: Annual book of ASTM standards, 1997.
11. ASTM standard E1820, Standard test method for measurement of fracture toughness. In: Annual book of ASTM standards , 2002.
12. Espeseth, V., Morin, D., Børvik, T., & Hopperstad, O. S. (2023). A gradient-based non-local GTN model: Explicit finite element simulation of ductile damage and fracture. Engineering Fracture Mechanics, 109442.
https://doi.org/10.1016/j.engfracmech.2023.109442
13. Cao, Y., Chang, Q., & Zhen, Y. (2022). Numerical simulation of fracture behavior for the pipeline with girth weld under axial load. Engineering Failure Analysis, 136, 106221.
https://doi.org/10.1016/j.engfailanal.2022.106221
14. Maropoulos S, Ridley N, Kechagias J, Karagiannis S (2004) Fracture toughness evaluation of a H.S.L.A steel. Engng Fract Mech (71): 1695-1704.
https://doi.org/10.1016/j.engfracmech.2003.08.006
15. Liu, Z., Wang, X., Miller, R. E., Hu, J., & Chen, X. (2021). Fracture toughness of thermal aged 16MND5 bainitic forging steel under varying 3D constraint conditions: an experimental study using SENT specimens. Theoretical and Applied Fracture Mechanics, 114, 103025.
https://doi.org/10.1016/j.tafmec.2021.103025
16. Alipour Yengejeh, E., Torun, AR., Khajedezfouli, M., Choupani. N., Fracture Toughness Assessment of Longitudinally Seam-Welded Gas Pipelines at Low Temperatures. Journal of Pipeline Systems Engineering and Practice 11, no. 4 (2020): 04020049.
https://orcid.org/0000-0001-7872-6408 nchoupani@atu.edu.tr
17. Asghari V, Choupani N, Hanifi M. Experimental determination of fracture toughness of base steel and longitudinal seam weld in API X65 gas line-pipe using unloading compliance method. Modares Mechanical Engineering 16, no. 11 (2017): 284-290.
http://mme.modares.ac.ir/article-15-5885-en.html
18. Zhou, D. W. Measurement and modelling of R-curves for low-constraint specimens. Engineering Fracture Mechanics 78, no. 3 (2011): 605-622.
https://doi.org/10.1016/j.engfracmech.2010.08.019
19. Chahboub, Yassine, and Szabolcs Szávai. Determination of GTN parameters for SENT specimen during ductile fracture. Procedia Structural Integrity 16 (2019): 81-88.
https://doi.org/10.1016/j.prostr.2019.07.025
20. Acharyya, S., and S. Dhar. A complete GTN model for prediction of ductile failure of pipe. Journal of Materials Science 43, no. 6 (2008): 1897-1909.
https://doi.org/10.1016/j.mtcomm.2022.105223
21. Zuo, Jianzheng, Xiaomin Deng, Michael A. Sutton, and Chin Shang Cheng. Three-Dimensional Crack Growth in Ductile Materials: Effect of Stress Constraint on Crack Tunneling. Journal of Pressure Vessel Technology 130, no. 3 (2008): 031401.
https://doi.org/10.1016/j.engfracmech.2022.109015
22. Zhang, Yinhui, Jian Shuai, Zhiyang Lv, and Tieyao Zhang. Study on fracture behavior of pipeline girth weld based on CTOD-Am method and Gurson ductile damage model. Theoretical and Applied Fracture Mechanics 123 (2023): 103692.
https://doi.org/10.1016/j.tafmec.2022.103692
23. Hashemi, S. H., S. Sedghi, V. Soleymani, and D. Mohammadyani. CTOA levels of welded joint in API X70 pipe steel. Engineering Fracture Mechanics 82 (2012): 46-59.
https://doi.org/10.1016/j.engfracmech.2011.11.022
24. Rezaei yekta, M. Numerical simulation of notched specimens tensile test of API X65 with Gurson Model. MSc Thesis, Birjand University, 2010.
25. He, Min, and Fuguo Li. Modified transformation formulae between fracture toughness and CTOD of ductile metals considering pre-deformation effects. Engineering fracture mechanics 77, no. 14 (2010): 2763-2771.
https://doi.org/10.1016/j.engfracmech.2010.06.021
26. Oh, Chang-Kyun, Yun-Jae Kim, Jong-Hyun Baek, Young-Pyo Kim, and Woosik Kim. A phenomenological model of ductile fracture for API X65 steel. International Journal of Mechanical Sciences 49, no. 12 (2007): 1399-1412.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Journal of Design Against Fatigue

This work is licensed under a Creative Commons Attribution 4.0 International License.