Fatigue behavior in Inconel alloys produced by 3D printing: A short review

Authors

  • Prof. K.R. Kashyzadeh Author
  • Siamak Ghorbani Author

DOI:

https://doi.org/10.62676/jdaf.2025.3.1.20

Keywords:

Superalloy, Inconel, Additive manufacturing, Fatigue, Heat treatment, Post-processing

Abstract

Inconel alloys, especially IN625 and IN718, are widely used in the aerospace and energy industries due to their high temperature and corrosion resistance. With the development of additive manufacturing (AM) methods, it has become possible to produce complex parts from these alloys, such as gas turbine blade. However, the fatigue behavior of these parts is affected by several factors that require careful investigation. This paper investigates the effect of manufacturing method, microstructure, heat treatment, and surface irregularities on the fatigue behavior of Inconel alloys produced by 3D printing. The results indicated that heat treatment has a great impact on microstructure, including the size, texture, grain mode, and precipitates. Loading path and temperature influence the fatigue crack propagation mechanism. Hot isostatic pressing (HIP) significantly influences the fatigue of AMed parts by improving eliminating residual stresses, surface finish, increasing hardness and decreasing porosity, inclusions, and microcracks. This is mainly related to partial recrystallization and dissolution of hard phases. Various types of surface treatment also improves the fatigue behavior by producing nanostructured surface layer and the high compressive residual stress (CRS).

References

1. K. Minet, A. Saharan, A Loesser, N. Raitanen, 8 - Superalloys, powders, process monitoring in additive manufacturing, Editor(s): Francis Froes, Rodney Boyer, Additive Manufacturing for the Aerospace Industry, Elsevier, 2019, 163-185, https://doi.org/10.1016/B978-0-12-814062-8.00009-1.

2. M. Perrut , P. Caron, M. Thomas, A. Couret, High temperature materials for aerospace applications: Ni-based superalloys and γ -TiAl alloys, C. R. Physique, 19 (2018) 657–671, https://doi.org/10.1016/j.crhy.2018.10.002.

3. S. Dai, K. Zhu, S. Wang, Z. Deng, Additively manufactured materials: A critical review on their anisotropic mechanical properties and modeling methods, J. Manuf. Process. 141 (2025) 789–814, https://doi.org/10.1016/j.jmapro.2025.02.038.

4. P. Gradl, S.E. Greene , C. Protz, B. Bullard, J. Buzzell, C. Garcia, J. Wood, K. Cooper, Additive manufacturing of liquid rocket engine combustion devices: a summary of process developments and hot-fire testing results, 54th AIAA/SAE/ASEE Joint Propulsion Conference 2018, Cincinnatti, OH United States Start, AIAA, ASEE, SAE, (2018), 1–34.

5. D. Bourell, J.P. Kruth, M. Leu, G. Levy, D. Rosen, A.M. Beese, A. Clare, Materials for additive manufacturing, CIRP Ann. Manuf. Technol. 66 (2017) 659–681, http://dx.doi.org/10.1016/j.cirp.2017.05.009.

6. A. Hinojos, J. Mireles, A. Reichardt, P. Frigola, P. Hosemann, L.E. Murr, R.B. Wicker, Joining of Inconel 718 and 316 Stainless Steel using electron beam melting additive manufacturing technology, Mater. Des. 94 (2016) 17–27, http://dx.doi.org/10.1016/j.matdes.2016.01.041.

7. J.B. Roca, P. Vaishnav, E.R.H. Fuchs, M.G. Morgan, Policy needed for additive manufacturing, April 5, 2016, Available at SSRN: https://ssrn.com/abstract=2759594, or http://dx.doi.org/10.2139/ssrn.2759594.

8. X. Wang, K. Chou, Electron backscatter diffraction analysis of Inconel 718 parts fabricated by selective laser melting additive manufacturing, JOM 69 (2017) 402–408, https://doi.org/10.1007/s11837-016-2198-1.

9. C. Bemfica, V. Nascimento, E. Fessler, J.A Araújo, F. Castro, Multiaxial fatigue of Inconel 718 produced by selective laser melting at room and high temperature, Int. J. Fatigue 163 (2022) 107108, https://doi.org/10.1016/j.ijfatigue.2022.107108.

10. H. Soni, M. Gor, G.S. Rajput, P. Sahlot, A comprehensive review on effect of process parameters and heat treatment on tensile strength of additively manufactured Inconel-625, Mater. Today 47 (2021) 4866–4871, https://doi.org/10.1016/j.matpr.2021.06.126.

11. E. Hosseini, V.A. Popovich, A review of mechanical properties of additively manufactured Inconel 718, Addit. Manuf. 30 (2019) 100877, https://doi.org/10.1016/j.addma.2019.100877.

12. R.R. Srivastava, M.S. Kim, J.C. Lee, M.K. Jha, B.S. Kim, Resource recycling of superalloys and hydrometallurgical challenges, J. Mater. Sci. 49 (2014) 4671–4686, https://doi.org/10.1007/s10853-014-8219-y.

13. A.B. Badiru, V.V. Valencia, A.B. Badiru, D. Liu, C.R. Hartsfield, A review on powder bed fusion technology of metal additive manufacturing. Additive Manufacturing Handbook, Product Development for the Defense Industry, (1st ed.). CRC Press. (2017) 251–61, https://doi.org/10.1201/9781315119106.

14. B.B. Milner, P. Gradl, G. Snedden, M. Brooks, J. Pitot, E. Lopez, M. Leary, F. Berto, A.d Plessis, Metal additive manufacturing in aerospace: A review, Mater. Des. 209 (2021) 110008, https://doi.org/10.1016/j.matdes.2021.110008.

15. N.J. Harrison, I. Todd, K. Mumtaz, Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: A fundamental alloy design approach. Acta Mater. 94 (2015) 59–68, https://doi.org/10.1016/j.actamat.2015.04.035.

16. S. Herranz, F.J. Campa, L.N.L. Lacalle, A. Rivero, A. Lamikiz, E. Ukar, J.A. Sanchez, U. Bravo, The milling of airframe components with low rigidity: a general approach to avoid static and dynamic problems, Proc. IMechE Part B: J. Engineering Manufacture 219 (2005) 789-801, https://doi.org/10.1243/095440505X32742.

17. A. Mostafaei, R. Ghiaasiaan, I.T. Ho, S. Strayer, K.C. Chang, N. Shamsaei, S. Shao, S. Paul, A.C. Yeh, S. Tin, A.C. To, Additive manufacturing of nickel-based superalloys: A state-of-the-art review on process-structure-defect-property relationship, Prog. Mater. Sci. 136 (2023) 101108, https://doi.org/10.1016/j.pmatsci.2023.101108

18. E. Sadeghi, P. Karimi, R. Esmaeilizadeh, F. Berto, S. Shao, J. Moverare, E. Toyserkani, N. Shamsaei, A state-of-the-art review on fatigue performance of powder bed fusion-built alloy 718, Prog. Mater. Sci. 133 (2023) 101066, https://doi.org/10.1016/j.pmatsci.2022.101066

19. Md. Shahwaz, Pr. Nath, I. Sen, A critical review on the microstructure and mechanical properties correlation of additively manufactured nickel-based superalloys, J. Alloys Compd. 907 (2022) 164530, https://doi.org/10.1016/j.jallcom.2022.164530

20. G. Gudivada, A.K. Pandey, Recent developments in nickel-based superalloys for gas turbine applications: Review, J. Alloys Compd. 963 (2023) 171128, https://doi.org/10.1016/j.jallcom.2023.171128

21. Md. Shahwaz, Pr.Nath, I. Sen, Recent advances in additive manufacturing technologies for Ni-Based Inconel superalloys – A comprehensive review, J. Alloys Compd. 1010 (2025) 177654, https://doi.org/10.1016/j.jallcom.2024.177654

22. Q. Feng, Y. Wu, J. Li, Y. Cai, Y. Zhang, J. Liu, T. Liu, Effects of intermediate temperature on the grain boundary and γ’ precipitates of nickel-based powder superalloy under interrupted cooling, J. Alloy. Compd. 922 (2022) 166310, https://doi.org/10.1016/j.jallcom.2022.166310

23. F.G.L. Pereira, J.M. Lourenço, R.M. Nascimento, N.A. Castro, Fracture Behavior and Fatigue Performance of Inconel 625, Mater. Res. 21(4) (2018) e20171089, https://doi.org/10.1590/1980-5373-MR-2017-1089.

24. H. Liu, H. Yu, C. Guo, X. Chen, S. Zhong, L. Zhou, A. Osman, J. Lu, Review on fatigue of additive manufactured metallic alloys: microstructure, performance, enhancement, and assessment methods, 30th Anniversary of City University of Hong Kong April 25, 36(17) (2024) 2306570. https://doi.org/10.1002/adma.202306570.

25. Y.L. Hu, Y.L. Li, S.Y. Zhang, X. Lin, Z.H. Wang, W.D. Huang, Effect of solution temperature on static recrystallization and ductility of Inconel 625 superalloy fabricated by directed energy deposition, Mater. Sci. Eng. A. 772 (2020), https://doi.org/10.1016/j.msea.2019.138711.

26. S.P. Kumar, S. Elangovan, R. Mohanraj, J.R. Ramakrishna, A review on properties of Inconel 625 and Inconel 718 fabricated using direct energy deposition, Mater. Today 46 (2021) 7892–7906, https://doi.org/10.1016/j.matpr.2021.02.566.

27. S.Y. Liu, S. Shao, H. Guo, R. Zong, C.X. Qin, X.Y. Fang, The microstructure and fatigue performance of Inconel 718 produced by laser-based powder bed fusion and post heat treatment, Int. J. Fatigue 156 (2022) 106700, https://doi.org/10.1016/j.ijfatigue.2021.106700.

28. T. Sugiyama, S. Utada, T. Yokokawa, M. Osawa, K. Kawagishi, S. Suzuki, H. Harada, Oxidation resistance improvement of Ni-Base single-crystal superalloy melted in a CaO crucible, Metall. Mater. Trans. A 50A (2019) 3903, https://doi.org/10.1007/s11661-019-05297-8.

29. Fatigue of Nikel-based supperalloys: Part Two, https://www.totalmateria.com/ru/articles/fatigue-of-nickel-based-superalloys-2/ (Accessed 19 April 2025).

30. Y. Wu, K. Sun, S. Yu, L. Zuo, Modeling the selective laser melting-based additive manufacturing of thermoelectric powders, Addit. Manuf. 37 (2021) 101666, https://doi.org/10.1016/j.addma.2020.101666.

31. N.A. Siddiqui, M. Muzamil, T. Jamil, G. Hussain, Heat sources in wire arc additive manufacturing and their impact on macro-microstructural characteristics and mechanical properties – An overview, Smart Mater. Manuf. 3 (2025) 100059, https://doi.org/10.1016/j.smmf.2024.100059.

32. Xi. Gong, T. Anderson, K. Chou, Review on powder-based electron beam additive manufacturing technology, Manufacturing Rev. 1(2) (2014) 1–12. https://doi.org/10.1051/mfreview/2014001.

33. Z. Tian, C. Zhang , D. Wang, W. Liu, X. Fang, D. Wellmann, Y. Zhao, Y. Tian, A review on laser powder bed fusion of Inconel 625 nickel-based alloy, Appl. Sci. 10(1) (2020) 81; https://doi.org/10.3390/app10010081.

34. I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies, Springer New York, New York, 2015.

35. L.A Trejo, E.C. Urquizo, D. Bhate, A.R. Flores, Mechanical metamaterials with topologies based on curved elements: An overview of design, additive manufacturing and mechanical properties, Mater. Des. 233 (2023) 112190, https://doi.org/10.1016/j.matdes.2023.112190.

36. E.M. Sefene, State-of-the-art of selective laser melting process: A comprehensive review, J. Manuf. Syst. 63 (2022) 250–274, https://doi.org/10.1016/j.jmsy.2022.04.002.

37. A. Gisario, M. Kazarian, F. Martina, M. Mehrpouya, Metal additive manufacturing in the commercial aviation industry: A review, J. Manuf. Syst. 53 (2019) 124–149, https://doi.org/10.1016/j.jmsy.2019.08.005.

38. D. Svetlizky, M. Das, B. Zheng, A.L. Vyatskikh, S. Bose, A. Bandyopadhyay, J.M. Schoenung, E.J. Lavernia, N. Eliaz, Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications, 49 (2021) 271–295, https://doi.org/10.1016/j.mattod.2021.03.020.

39. Y. Li, C. Su, J. Zhu, Comprehensive review of wire arc additive manufacturing: Hardware system, physical process, monitoring, property characterization, application and future prospects, Results in Eng. 13 (2022) 100330, https://doi.org/10.1016/j.rineng.2021.100330.

40. M. Liu, A. Kumar, S. Bukkapatnam, M. Kuttolamadom, A Review of the Anomalies in Directed Energy Deposition (DED) Processes & Potential Solutions - Part Quality & Defects, Procedia Manufacturing 53 (2021) 507–518, https://doi.org/10.1016/j.promfg.2021.06.093.

41. S. Suryakumar, K.P. Karunakaran, A. Bernard, U. Chandrasekhar, N. Raghavender, D. Sharma Weld bead modeling and process optimization in hybrid layered manufacturing, Comput. Aided Des. 43 (4) (2011) 331–344, http://dx.doi.org/10.1016/j.cad.2011.01.006.

42. D. Ding, Z. Pan, S.V. Duin, H. Li, C. Shen, Fabricating superior NiAl bronze components through wire arc additive manufacturing, Materials 9(8) (2016) 652, https://doi.org/10.3390/ma9080652.

43. N. Town, S. Lawler, 12 – Construction methods for small modular reactors (SMRs), Handbook of Small Modular Nuclear Reactors Woodhead Publishing Series in Energy 2015, 293–317, https://doi.org/10.1533/9780857098535.3.293

44. A. Ghorpade, U Prakash, S. Joshi, Effect of heat treatments on strengthening mechanisms in electron beam melted superalloy Inconel 718, Mater. Sci. Eng. A. 895 (2024) 146232, https://doi.org/10.1016/j.msea.2024.146232.

45. O. Gokcekaya, A. Günen, F. Ceritbinmez, A. Bahador, T. Nakano, M. Çetin, Wire‑EDM performance and surface integrity of Inconel 718 with unique microstructural features fabricated by laser powder bed fusion, J. Adv. Manuf. Technol. (2024) 130 4513–4528, https://doi.org/10.1007/s00170-023-12924-7.

46. F.I. Jamhari, F.M. Foudzi, M.A. Buhairi, A.B. Sulong, N.A.M. Radzuan, N. Muhamad, I.F. Mohamed, N. Hani Jamadon, K.S. Seah, Influence of heat treatment parameters on microstructure and mechanical performance of titanium alloy in LPBF: A brief review, JMR&T. (2023) 24, 4091–4110, https://doi.org/10.1016/j.jmrt.2023.04.090.

47. A. Arghavan, K. Reza Kashyzadeh, A. Amiri Asfarjani, Investigating effect of industrial coatings on fatigue damage, Applied Mechanics and Materials. 87 (2011) 230-237, https://doi.org/10.4028/www.scientific.net/AMM.87.230.

48. K.R. Kashyzadeh, A. Arghavan, Study of the effect of different industrial coating with microscale thickness on the CK45 steel by experimental and finite element methods, Strength of materials. 45 (2013) 748-757, https://doi.org/10.1007/s11223-013-9510-x.

49. H. Abdollahnia, M.H. Alizadeh Elizei, K. Reza Kashyzadeh, Low-cycle fatigue behavior of H-shaped steel piles of an integral concrete bridge subjected to temperature variations, Materials Today: Proceedings. 46 (2021) 1657-1662, https://doi.org/10.1016/j.matpr.2020.07.261.

50. E. Maleki, K. Reza Kashyzadeh, Effects of the hardened nickel coating on the fatigue behavior of ck45 steel: experimental, finite element method, and artificial neural network modelling, Iranian Journal of Materials Science & Engineering. 14(4) (2017), https://doi.org/10.22068/ijmse.14.4.81.

51. K. Reza Kashyzadeh, E. Maleki, Experimental investigation and artificial neural network modeling of warm galvanization and hardened chromium coatings thickness effects on fatigue life of AISI 1045 carbon steel, Journal of Failure Analysis and Prevention. 17 (2017) 1276-1287, https://doi.org/10.1007/s11668-017-0362-8.

52. K.R. Kashyzadeh, S. Ghorbani, High-cycle fatigue behavior and chemical composition empirical relationship of low carbon three-sheet spot-welded joint: An application in automotive industry, Journal of Design Against Fatigue. 1(2) (2023) 1-8.

53. N. Shamsaei, A. Yadollahi, L. Bian, S.M. Thompson, An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control, Addit. Manuf. 8 (2015) 12–35, https://doi.org/10.1016/j.addma.2015.07.002.

54. C.M. Pilgar, A.M. Fernandez, J. Segurado, Microstructure sensitive fatigue life prediction model for SLM fabricated Hastelloy-X, Int. J. Fatigue 168 (2023) 107372, https://doi.org/10.1016/j.ijfatigue.2022.107372.

55. A. Yadollahi, N. Shamsaei, Additive manufacturing of fatigue resistant materials: Challenges and opportunities, Int. J. Fatigue 98 (2017) 14–31, http://dx.doi.org/10.1016/j.ijfatigue.2017.01.001.

56. G. Macoretta, L. Bertini, B.D. Monelli, F. Berto, Productivity-oriented SLM process parameters effect on the fatigue strength of Inconel 718, Int. J. Fatigue 168 (2023) 107384, https://doi.org/10.1016/j.ijfatigue.2022.107384.

57. Y. Murakami, H. Masuo, Y. Tanaka, M. Nakatani, Defect analysis for additively manufactured materials in fatigue from the viewpoint of quality control and statistics of extremes, Procedia Struct. Integr. 19 (2019) 113–122, https://doi.org/10.1016/j.prostr.2019.12.014.

58. W. Li, T.Y. Hu, R. Sun, Y.C. Zhang, Effect of high temperature on failure behavior of additively manufactured superalloy under fatigue, Procedia Struct. Integr. 46 (2023) 119–124, https://doi.org/10.1016/j.prostr.2023.06.020.

59. I. Koutiri, E. Pessard, P. Peyre, O Amlou, T. Terris, Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts, J. Mater. Process. Technol. 255 (2018) 536–546, https://doi.org/10.1016/j.jmatprotec.2017.12.043.

60. D.A. Maciel, Fatigue behaviour of Inconel 625 produced by directed energy deposition, Master’s Thesis, Faculty of Engineering of the University of Porto, Porto, Portugal, 2020.

61. F.G. Pereira, J.M. Lourenco, R.M. do Nascimento, N.A. Castro, Fracture behavior and fatigue performance of inconel 625. Mater. Res. 21(4) (2018) 1–13, https://doi.org/10.1590/1980-5373-mr-2017-1089.

62. M.A. Anam, Microstructure and mechanical properties of selective laser melted superalloy inconel 625, PhD thesis, University of Louisville, 8 2018.

63. D.Z. Avery, O.G. Rivera, C.J.T. Mason, B.J. Phillips, J.B. Jordon, J. Su, N. Hard-wick, P.G. Allison, Fatigue behavior of solid-state additive manufactured inconel 625. JOM, 70 (2018) 2475–2484, https://doi.org/10.1007/s11837-018-3114-7.

64. D. Celli, M.H. Shen, T. George, O. Scott-Emuakpor, C. Holycross, Development of a fatigue damage and lifing assessment method for inconel 625 and aluminum 6061-T6. Turbo Expo: Power for Land, Sea, and Air, 2017. https://doi.org/10.1115/GT2017-63775.

65. A.E. Abela. High cycle fatigue of additively manufactured inconel 625. Master’s thesis, Georgia Institute of Technology, 2020.

66. J.-R. Poulin, A. Kreitcberg, P. Terriault, V. Brailovski, Fatigue strength prediction of laser powder bed fusion processed Inconel 625 specimens with intentionally seeded porosity: Feasibility study, Int. J. Fatigue, 132 (2020) 105394. https://doi.org/10.1016/j.ijfatigue.2019.105394.

67. N. Kashaev, M. Horstmann, V. Ventzke, S. Riekehr, N. Huber, Comparative study of mechanical properties using standard and micro-specimens of base materials inconel 625, inconel 718 and Ti-6Al-4V, JMR 2(1) (2013) 41-47, http://dx.doi.org/10.1016/j.jmrt.2013.03.003.

68. G. Wu, M. Yang, Z. Yu, S. Zhang, H. Liu, J. Xiong, Experimental studies on the anisotropic fatigue behaviour of IN718 fabricated via wire arc additive manufacturing, Metals 14(7) (2024) 770, https://doi.org/10.3390/met14070770.

69. E. Salvati, A.J.G. Lunt, C.P. Heason, G.J. Baxter, A.M. Korsunsky, An analysis of fatigue failure mechanisms in an additively manufactured and shot peened IN 718 nickel superalloy, Mater. Des. 191 (2020) 108605, https://doi.org/10.1016/j.matdes.2020.108605.

70. A. Dinita, A. Neacs, A. Ileana Portoacă, M. Tănase, C. Nicolae Ilinca, I.N. Ramadan, Additive manufacturing post-processing treatments, a review with emphasis on mechanical characteristics, Materials (16) 2023 4610, https://doi.org/10.3390/ma16134610.

71. W. Wang, Z. Chen, W. Lu, F. Meng, T. Zhao, Heat treatment for selective laser melting of Inconel 718 alloy with simultaneously enhanced tensile strength and fatigue properties, J. Alloys Compd. 913 (2022) 165171, https://doi.org/10.1016/j.jallcom.2022.165171.

72. R. Konecna, L. Kunz, G. Nicoletto, A. Baca, Long fatigue crack growth in Inconel 718 produced by selective laser melting, Int. J. Fatigue 92 (2016) 499–506, http://dx.doi.org/10.1016/j.ijfatigue.2016.03.012.

73. P.D. Nezhadfara, A.S. Johnsonc, N. Shamsaei, Fatigue behavior and microstructural evolution of additively manufactured Inconel 718 under cyclic loading at elevated temperature, Int. J. Fatigue 136 (2020) 105598, https://doi.org/10.1016/j.ijfatigue.2020.105598.

74. D. Deng, R.L. Peng, H. Brodin, J. Moverare, Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and effects of post heat treatments, Mater. Sci. Eng. A 713 (2018) 294–306, https://doi.org/10.1016/j.msea.2017.12.043.

75. V. Paranthaman, D. Poosapadi, A. Sailesh, V. Sharma, R. Singh, R.L. Babu, K.K. Arun, M. Ravichandra, T.S. Senthil, Role of heat treatment in enhancing microstructure and properties of Inconel 625 manufactured by directed energy deposition using wire arc, JALMES 9 (2025) 100147, https://doi.org/10.1016/j.jalmes.2024.100147.

76. L.E. Murr, E. Martinez, S.M. Gaytan, D.A. Ramirez, B.I. Machado, P.W. Shindo, J.L. Martinez, F. Medina, J. Wooten, D. Ciscel, U. Ackelid, R.B. Wicker, Microstructural architecture, microstructures, and mechanical properties for a nickel-base superalloy fabricated by electron beam melting, Metall. Mater. Trans. A 42, 3491–3508 https://doi.org/10.1007/s11661-011-0748-2.

77. Y. Hu, X. Lin, Y. Li, S. Zhang, Q. Zhang, W. Chen, W. Li, W. Huang, Influence of heat treatments on the microstructure and mechanical properties of Inconel 625 fabricated by directed energy deposition, Mater. Sci. Eng. A 817 (2021) 141309, https://doi.org/10.1016/j.msea.2021.141309.

78. A.N.M. Tanvir, M.D.R.U. Ahsan, G. Seo, J.D. Kim, C. Ji, B. Bates, Y. Lee, D.B. Kim, Heat treatment effects on Inconel 625 components fabricated by wire + arc additively manufacturing (WAAM)—part 2: mechanical properties, J. Adv. Manuf. Technol. 110 (2020) 1709–1721, https://doi.org/10.1007/s00170-020-05980-w.

79. G.M. Volpato, U. Tetzlaff, M.C. Fredel, A comprehensive literature review on laser powder bed fusion of Inconel superalloys, Addit. Manuf. 55 (2022) 102871, https://doi.org/10.1016/j.addma.2022.102871.

80. R.M. Karimbaev, Y.S. Pyun, A. Amanov, Fatigue life extension of additively manufactured Nickel-base 718 alloy by nanostructured surface, Mater. Sci. Eng. A 831 (2022) 142041, https://doi.org/10.1016/j.msea.2021.142041.

81. X. Yin, X. Li, Y. Liu, D. Geng, D. Zhang, Surface integrity and fatigue life of Inconel 718 by ultrasonic peening milling, JMRT 22 (2023) 1392–1409, https://doi.org/10.1016/j.jmrt.2022.12.019.

82. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, А. Lamikiz, G.I. Prokopenko, Pos t-processing of the Inconel 718 alloy parts fabricated by selective laser melting: Effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress Surf. Coat. Technol. 381 (2020) 125136, https://doi.org/10.1016/j.surfcoat.2019.125136.

Downloads

Published

2025-06-03

How to Cite

Fatigue behavior in Inconel alloys produced by 3D printing: A short review. (2025). Journal of Design Against Fatigue, 3(1), 19-36. https://doi.org/10.62676/jdaf.2025.3.1.20