Machine learning-based model for fatigue behavior analysis of plasma nitrided AISI 304 steel

Authors

  • Erfan Maleki Politecnico di Milano Author
  • Okan Unal Karabuk University Author

DOI:

https://doi.org/10.62676/kpzvwt73

Keywords:

Fatigue, plasma nitriding, machine learning, deep learning

Abstract

Surface treatments play critical role in fatigue behavior improvement of metals. In this study, a machine learning-based model was employed to analyze the effects of plasma nitriding as a thermal surface treatment on improving the fatigue behavior of AISI 304 steel. Experimental data, encompassing various plasma nitriding and fatigue loading conditions, were utilized to train different types of artificial neural networks including shallow neural networks and deep neural networks. The inputs to the model were the process parameters of plasma nitriding, including time and temperature, along with the stress amplitude in the fatigue test. The output parameter was the fatigue life. The findings demonstrated that employing deep neural networks led to higher accuracy in the predictions. Furthermore, the obtained results of conducted parametric analyses indicated that the optimal temperature range for achieving the highest fatigue performance lies between approximately 450-550 °C for more than 4 h.

References

1. O. Unal, R. Varol, Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening, Appl. Surf. Sci. 351 (2015) 289–295. https://doi.org/10.1016/j.apsusc.2015.05.093.b

2. E. Maleki, O. Unal, Fatigue limit prediction and analysis of nano-structured AISI 304 steel by severe shot peening via ANN, Eng. Comput. 37 (2021) 2663–2678. https://doi.org/10.1007/s00366-020-00964-6.

3. S. Liu, S.Y. Gao, Y.F. Zhou, X.L. Xing, X.R. Hou, Y.L. Yang, Q.X. Yang, A research on the microstructure evolution of austenite stainless steel by surface mechanical attrition treatment, Mater. Sci. Eng. A. 617 (2014) 127–138. https://doi.org/10.1016/j.msea.2014.08.049.

4. A. Tevlek, H.M. Aydın, E. Maleki, R. Varol, O. Unal, Effects of severe plastic deformation on pre-osteoblast cell behavior and proliferation on AISI 304 and Ti-6Al-4V metallic substrates, Surf. Coatings Technol. 366 (2019) 204–213. https://doi.org/10.1016/j.surfcoat.2019.03.034.

5. A. Amanov, R. Karimbaev, E. Maleki, O. Unal, Y.S. Pyun, T. Amanov, Effect of combined shot peening and ultrasonic nanocrystal surface modification processes on the fatigue performance of AISI 304, Surf. Coatings Technol. 358 (2019) 695–705. https://doi.org/10.1016/j.surfcoat.2018.11.100.

6. L. Ceschini, C. Chiavari, E. Lanzoni, C. Martini, Low-temperature carburised AISI 316L austenitic stainless steel: Wear and corrosion behaviour, Mater. Des. (2012). https://doi.org/10.1016/j.matdes.2012.02.019.

7. O. Unal, E. Maleki, R. Varol, Plasma nitriding of gradient structured AISI 304 at low temperature: Shot peening as a catalyst treatment, Vacuum. 164 (2019) 194–197. https://doi.org/10.1016/j.vacuum.2019.03.027.

8. H. Ferkel, M. Glatzer, Y. Estrin, R.Z. Valiev, C. Blawert, B.L. Mordike, RF plasma nitriding of severely deformed iron-based alloys, Mater. Sci. Eng. A. (2003). https://doi.org/10.1016/S0921-5093(02)00687-1.

9. E. Maleki, S. Bagherifard, M. Bandini, M. Guagliano, Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities, Addit. Manuf. 37 (2021) 101619.

https://doi.org/10.1016/j.addma.2020.101619.

10. K. Nikolov, K. Bunk, A. Jung, P. Kaestner, G. Bräuer, C.P. Klages, High-efficient surface modification of thin austenitic stainless steel sheets applying short-time plasma nitriding by means of strip hollow cathode method for plasma thermochemical treatment, Vacuum. (2014). https://doi.org/10.1016/j.vacuum.2014.09.002.

11. O. Unal, E. Maleki, R. Varol, Effect of severe shot peening and ultra-low temperature plasma nitriding on Ti-6Al-4V alloy, Vacuum. 150 (2018) 69–78. https://doi.org/10.1016/j.vacuum.2018.01.027.

12. S. Corujeira Gallo, H. Dong, On the fundamental mechanisms of active screen plasma nitriding, Vacuum. (2009). https://doi.org/10.1016/j.vacuum.2009.07.002.

13. H. Aghajani, M. Torshizi, M. Soltanieh, A new model for growth mechanism of nitride layers in plasma nitriding of AISI H11 hot work tool steel, Vacuum. (2017). https://doi.org/10.1016/j.vacuum.2017.03.032.

14. M. Ozturk, F. Husem, I. Karademir, E. Maleki, A. Amanov, O. Unal, Fatigue crack growth rate of AISI 4140 low alloy steel treated via shot peening and plasma nitriding, Vacuum. 207 (2023) 111552. https://doi.org/10.1016/j.vacuum.2022.111552.

15. R. Kertscher, S.F. Brunatto, On the kinetics of nitride and diffusion layer growth in niobium plasma nitriding, Surf. Coatings Technol. (2020). https://doi.org/10.1016/j.surfcoat.2020.126220.

16. J. Fernández de Ara, E. Almandoz, J.F. Palacio, G.G. Fuentes, Simultaneous ageing and plasma nitriding of grade 300 maraging steel: How working pressure determines the effective nitrogen diffusion into narrow cavities, Surf. Coatings Technol. (2017). https://doi.org/10.1016/j.surfcoat.2017.02.060.

17. L. Shen, L. Wang, Y. Wang, C. Wang, Plasma nitriding of AISI 304 austenitic stainless steel with pre-shot peening, Surf. Coatings Technol. (2010). https://doi.org/10.1016/j.surfcoat.2010.03.018.

18. R. Valencia-Alvarado, A. de la Piedad-Beneitez, J. de la Rosa-Vázquez, R. López-Callejas, S.R. Barocio, O.G. Godoy-Cabrera, A. Mercado-Cabrera, R. Peña-Eguiluz, A.E. Muñoz-Castro, Nitriding of AISI 304 stainless steel in a 85% H2/15% N2 mixture with an inductively coupled plasma source, Vacuum. (2008). https://doi.org/10.1016/j.vacuum.2008.03.087.

19. J.C. Díaz-Guillén, M. Naeem, J.L. Acevedo-Dávila, H.M. Hdz-García, J. Iqbal, M.A. Khan, J. Mayen, Improved Mechanical Properties, Wear and Corrosion Resistance of 316L Steel by Homogeneous Chromium Nitride Layer Synthesis Using Plasma Nitriding, J. Mater. Eng. Perform. (2020). https://doi.org/10.1007/s11665-020-04653-9.

20. S. Lu, X. Zhao, S. Wang, J. Li, W. Wei, J. Hu, Performance enhancement by plasma nitriding at low gas pressure for 304 austenitic stainless steel, Vacuum. (2017). https://doi.org/10.1016/j.vacuum.2017.09.020.

21. O. Unal, E. Maleki, R. Varol, Comprehensive analysis of pulsed plasma nitriding preconditions on the fatigue behavior of AISI 304 austenitic stainless steel, Int. J. Miner. Metall. Mater. (2021). https://doi.org/10.1007/s12613-020-2097-x.

22. K. Reza Kashyzadeh, E. Maleki, Experimental Investigation and Artificial Neural Network Modeling of Warm Galvanization and Hardened Chromium Coatings Thickness Effects on Fatigue Life of AISI 1045 Carbon Steel, J. Fail. Anal. Prev. 17 (2017) 1276–1287. https://doi.org/10.1007/s11668-017-0362-8.

23. M. Jahanshahi, E. Maleki, A. Ghiami, On the efficiency of artificial neural networks for plastic analysis of planar frames in comparison with genetic algorithms and ant colony systems, Neural Comput. Appl. 28 (2017) 3209–3227. https://doi.org/10.1007/s00521-016-2228-5.

24. E. Maleki, Modeling of Severe Shot Peening Effects to Obtain Nanocrystalline Surface on Cast Iron Using Artificial Neural Network, in: Mater. Today Proc., 2016: pp. 2197–2206. https://doi.org/10.1016/j.matpr.2016.04.126.

25. E. Maleki, O. Unal, Shot Peening Process Effects on Metallurgical and Mechanical Properties of 316 L Steel via: Experimental and Neural Network Modeling, Met. Mater. Int. 27 (2021) 262–276. https://doi.org/10.1007/s12540-019-00448-3.

26. E. Maleki, G.H. Farrahi, Modelling of conventional and severe shot peening influence on properties of high carbon steel via artificial neural network, Int. J. Eng. Trans. B Appl. 31 (2018) 382–393. https://doi.org/10.5829/ije.2017.30.11b.00.

27. E. Maleki, G.H. Farrahi, K. Sherafatnia, Application of artificial neural network to predict the effects of severe shot peening on properties of low carbon steel, 2016. https://doi.org/10.1007/978-981-10-1082-8_5.

28. N. Maleki, S. Kashanian, E. Maleki, M. Nazari, A novel enzyme based biosensor for catechol detection in water samples using artificial neural network, Biochem. Eng. J. 128 (2017) 1–11. https://doi.org/10.1016/j.bej.2017.09.005.

29. E. Maleki, M.J. Mirzaali, M. Guagliano, S. Bagherifard, Analyzing the mechano-bactericidal effect of nano-patterned surfaces on different bacteria species, Surf. Coatings Technol. 408 (2021). https://doi.org/10.1016/j.surfcoat.2020.126782.

30. E. Maleki, S. Bagherifard, M. Guagliano, Application of artificial intelligence to optimize the process parameters effects on tensile properties of Ti-6Al-4V fabricated by laser powder-bed fusion, Int. J. Mech. Mater. Des. 18 (2022) 199–222. https://doi.org/10.1007/s10999-021-09570-w.

31. K.L. Xiang, P.Y. Xiang, Y.P. Wu, Prediction of the fatigue life of natural rubber composites by artificial neural network approaches, Mater. Des. (2014). https://doi.org/10.1016/j.matdes.2013.12.044.

32. E. Maleki, O. Unal, M. Guagliano, S. Bagherifard, Analysing the Fatigue Behaviour and Residual Stress Relaxation of Gradient Nano-Structured 316L Steel Subjected to the Shot Peening via Deep Learning Approach, Met. Mater. Int. 28 (2022) 112–131. https://doi.org/10.1007/s12540-021-00995-8

33. J.Y. Kang, B.I. Choi, H.J. Lee, J.S. Kim, K.J. Kim, Neural network application in fatigue damage analysis under multiaxial random loadings, Int. J. Fatigue. (2006). https://doi.org/10.1016/j.ijfatigue.2005.04.012.

34. T. Shi, J. Sun, J. Li, G. Qian, Y. Hong, Machine learning based very-high-cycle fatigue life prediction of AlSi10Mg alloy fabricated by selective laser melting, Int. J. Fatigue. (2023). https://doi.org/10.1016/j.ijfatigue.2023.107585.

35. M. Bartošák, Using machine learning to predict lifetime under isothermal low-cycle fatigue and thermo-mechanical fatigue loading, Int. J. Fatigue. (2022). https://doi.org/10.1016/j.ijfatigue.2022.107067.

36. E. Maleki, S. Bagherifard, S.M.J. Razavi, M. Bandini, A. du Plessis, F. Berto, M. Guagliano, On the efficiency of machine learning for fatigue assessment of post-processed additively manufactured AlSi10Mg, Int. J. Fatigue. 160 (2022) 106841. https://doi.org/10.1016/j.ijfatigue.2022.106841.

37. J. Horňas, J. Běhal, P. Homola, S. Senck, M. Holzleitner, N. Godja, Z. Pásztor, B. Hegedüs, R. Doubrava, R. Růžek, L. Petrusová, Modelling fatigue life prediction of additively manufactured Ti-6Al-4V samples using machine learning approach, Int. J. Fatigue. (2023). https://doi.org/10.1016/j.ijfatigue.2022.107483.

38. Z. Zhan, H. Li, Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L, Int. J. Fatigue. 142 (2021). https://doi.org/10.1016/j.ijfatigue.2020.105941.

39. E. Maleki, O. Unal, S.M. Seyedi Sahebari, K. Reza Kashyzadeh, I. Danilov, Application of Deep Neural Network to Predict the High-Cycle Fatigue Life of AISI 1045 Steel Coated by Industrial Coatings, J. Mar. Sci. Eng. (2022). https://doi.org/10.3390/jmse10020128.

40. [G.E. Hinton, S. Osindero, Y.W. Teh, A fast learning algorithm for deep belief nets, Neural Comput. 18 (2006) 1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527.

41. G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science (80). 313 (2006) 504–507. https://doi.org/10.1126/science.1127647.

42. J. Alphonsa, B.A. Padsala, B.J. Chauhan, G. Jhala, P.A. Rayjada, N. Chauhan, S.N. Soman, P.M. Raole, Plasma nitriding on welded joints of AISI 304 stainless steel, Surf. Coatings Technol. (2013). https://doi.org/10.1016/j.surfcoat.2012.05.113.

43. J.C. Díaz-Guillén, G. Vargas-Gutiérrez, E.E. Granda-Gutiérrez, J.S. Zamarripa-Piña, S.I. Pérez-Aguilar, J. Candelas-Ramírez, L. Álvarez-Contreras, Surface Properties of Fe4N Compounds Layer on AISI 4340 Steel Modified by Pulsed Plasma Nitriding, J. Mater. Sci. Technol. (2013). https://doi.org/10.1016/j.jmst.2013.01.017.

44. M. Asgari, A. Barnoush, R. Johnsen, R. Hoel, Microstructural characterization of pulsed plasma nitrided 316L stainless steel, Mater. Sci. Eng. A. (2011). https://doi.org/10.1016/j.msea.2011.09.055.

45. E. Maleki, O. Unal, S.M. Seyedi Sahebari, K.R. Kashyzadeh, A Novel Approach for Analyzing the Effects of Almen Intensity on the Residual Stress and Hardness of Shot-Peened (TiB + TiC)/Ti–6Al–4V Composite: Deep Learning, Materials (Basel). 16 (2023) 4693. https://doi.org/10.3390/ma16134693

Downloads

Published

2023-08-06

How to Cite

Machine learning-based model for fatigue behavior analysis of plasma nitrided AISI 304 steel. (2023). Journal of Design Against Fatigue, 1(2). https://doi.org/10.62676/kpzvwt73